Knee Reconstruction

Knee Reconstruction

View All Knee Surgery Providers

Knee Osteotomy is a surgical procedure in which the upper shinbone (tibia) or lower thighbone (femur) is cut and realigned. It is usually performed in arthritic conditions affecting only one side of your knee and the aim is to take pressure off the damaged area and shift it to the other side of your knee with healthy cartilage. During the surgery, your surgeon will remove or add a wedge of bone either below or above the knee joint depending on the site of arthritic damage.

Knee Osteotomy is commonly indicated for patients with osteoarthritis that is isolated to a single compartment (unicompartmental osteoarthritis).

A high tibial osteotomy is the most common type of osteotomy performed on arthritic knees. After general anesthesia is administered, your surgeon will map out the exact size of the bone wedge to be removed, using an X-ray, CT scan, or 3D computer modeling. A four- to five-inch cut is made down in front of the knee, starting below the kneecap and running below the top of the shinbone. Guide wires are drilled from the lateral side to the top of the shin bone. A conventional oscillating saw is run along the guide wires and the bone wedge underneath the outside of the knee, below the healthy cartilage is removed. The cartilage covering the top of the outside of the shinbone is left intact. Then the top of the shinbone is reduced and fastened with surgical staples or screws. After the procedure is completed, the surgical site is then sutured usually with absorbable sutures and closed in layers.

Complications following high tibial osteotomy may include infection, skin necrosis, non-union (failure of the bones to heal), nerve injury, blood vessel injury, failure to correct the varus deformity, compartment syndrome and deep vein thrombosis or blood clots.

High tibial osteotomy is a surgical procedure performed to relieve pressure on the damaged site of an arthritic knee joint. It is usually performed in arthritic conditions affecting only one side of your knee and the aim is to take pressure off the damaged area and shift it to the other side of your knee with healthy cartilage. During the surgery, your surgeon will remove or add a wedge of bone either below or above the knee joint depending on the site of arthritic damage.

High tibial osteotomy is commonly used for patients with osteoarthritis that is isolated to a single compartment (unicompartmental osteoarthritis). It is also performed for treating a variety of knee conditions such as gonarthrosis with varus or valgus malalignment, osteochondritis dissecans, osteonecrosis, posterolateral instability, and chondral resurfacing.

Procedure

The goal of the surgery is to release the involved joint compartment by correcting the malalignment of the tibia and to maintain the joint line perpendicular to the mechanical axis of the leg. There are two techniques that may be used: closing wedge osteotomy and opening wedge osteotomy. The surgeon determines the choice of the technique based on the requirement of the patient.

Closing wedge osteotomy

Closing wedge osteotomy is the most commonly used technique to perform high tibial osteotomy. In this procedure, the surgeon makes an incision in front of the knee and removes a small wedge of bone from the upper part of the tibia or shin bone. This manipulation brings the bones together and fills the space left by the removed bone. The surgeon then uses plates and screws to bind the bones together while the osteotomy heals. This procedure unloads the pressure off the damaged joint area and helps to transfer some of the weight to the outer part of the knee, where the cartilage is still intact.

Opening wedge osteotomy

In this procedure, the surgeon makes an incision in front of the knee, just below the knee cap and makes a wedge-shaped cut in the bone. Bone graft is used to fill the space of the wedge-shaped opening and if required plates and screws can be attached to further support the surgical site during the healing process. This realignment increases the angle of the knee to relieve the painful symptoms.

Complications following high tibial osteotomy may include infection, skin necrosis, non-union (failure of the bones to heal), nerve injury, blood vessel injury, failure to correct the varus deformity, compartment syndrome and deep vein thrombosis or blood clots.

Tibial tubercle osteotomy is a surgical procedure which is performed along with other procedures to treat patellar instability, patellofemoral pain, and osteoarthritis. This is a quite safe procedure and provides excellent access and surgical exposure during a difficult primary or revision total knee arthroplasty. Surgical treatment is indicated when physical therapy and other nonsurgical methods have failed and there is history of multiple knee dislocations. Tibial tubercle transfer technique involves realignment of the tibial tubercle (a bump in the front of the shin bone) such that the knee cap (patella) traverses in the center of the femoral groove. The patellar maltracking is corrected by moving the tibial tubercle medially, towards the inside portion of the leg. This removes the load off the painful portions of the knee cap and reduces the pain.

Surgical technique

The procedure is performed under general anesthesia and you will be completely unaware of the surgery until you wake up in the recovery room. At first, knee arthroscopy will be performed to inspect the inside portions of the knee joint. It involves small incisions or portals through which small instruments are passed and a video camera is used to visualize the anatomy of the knee joint, evaluate patella cartilage and assess patella tracking.

Tibial tubercle osteotomy and transfer is done through an incision made in the front of your leg just below the patella. In osteotomy procedure, a periosteal incision of 8-10 cm length is made at a distance of 1cm medial to the tibial tubercle. With the help of an oscillating saw, a cut is made medial to the tuberosity and a distal cut is also made. The tapered design of the distal cut avoids the risk of tibial fracture. Similarly, a proximal cut is made using appropriate instruments such as curved osteotome or reciprocating saw. Then an osteotomy through the bone cortex is performed without cutting off the lateral periosteum. The lateral periosteum serves as a point of attachment for the osteotomy segment. By doing this, a tibial tubercle segment which is more than 2 cm in width, more than 1 cm in thickness and 8-10 cm length can be obtained. It should include all portions of insertion of the patellar tendon. The segment from the tibia is then levered using osteotome to provide access to the medullary canal of the tibia.

The osteotomy segment is then moved under direct vision into a position that assures proper tracking of the patella. The tracking pattern can be confirmed arthroscopically. The mobilized bone is then fixed into its new place using screws, which can be removed later if they cause irritation.

Post-surgery Care

You may have minimal to moderate knee discomfort for several days or weeks after the surgery. Oral pain medications will be prescribed that helps control your pain. Keep the operated leg elevated and apply ice bag over the area for 20 minutes. This decrease swelling as well as pain. You will have a leg brace which may be removed only while sitting with your leg elevated and when using the continuous passive motion (CPM) unit. Physical therapy exercises should be done as it helps in regaining mobility. Eat healthy food and drink plenty of water.

Risks and complications

Risks following tibial tubercle osteotomy surgery are rare but may include compartment syndrome, deep vein thrombosis, infections and delayed bone healing.

Medial patellofemoral ligament reconstruction is a surgical procedure indicated in patients with more severe patellar instability. Medial patellofemoral ligament is a band of tissue that extends from the femoral medial epicondyle to the superior aspect of the patella. Medial patellofemoral ligament is the major ligament which stabilizes the patella and helps in preventing patellar subluxation (partial dislocation) or dislocation. This ligament can rupture or get damaged when there is patellar lateral dislocation. Dislocation can be caused by direct blow to the knee, twisting injury to the lower leg, strong muscle contraction, or because of a congenital abnormality such as shallow or malformed joint surfaces.

Medial patellofemoral ligament reconstruction using autogenous tissue grafts is done by following the basic principles of ligament reconstruction such as:

  • Graft Selection: Strong and stiff graft should be selected
  • Location: The graft should be located isometrically
  • Correct tension: The tension set in the graft should be appropriate
  • Secure Fixation: Stable fixation of the graft should be achieved
  • Avoid condylar rubbing or impingement: The graft should not rub against condyle or cause impingement

Surgical Technique

The surgical procedure of medial patellofemoral ligament reconstruction involves the following steps:

Graft Selection and Harvest: Your surgeon will make a 4-6 cm skin incision over your knee, at the midpoint between the medial epicondyle and the medial aspect of the patella (knee cap). The underlying subcutaneous fat and fascia are cut apart to expose the adductor tendon. The tendon is then stripped using a tendon stripper and its free end is sutured. The diameter of the tendon graft is measured using a sizer.

Alternatively, a graft can be harvested from the quadriceps tendon.

Location of the femoral isometric point: The graft should be placed isometrically to prevent it from overstretching and causing failure during joint movements. A transverse hole measuring 2.5 mm is made through the patella. Then a small incision is made over the lateral side of the patella and a strand of Vicryl suture material is inserted through the hole. Over this strand, a 2.5 mm Kirschner wire (K-wire) is passed and then inserted into the bone besides the medial epicondyle.

An instrument called pneumatic isometer is inserted into the hole made in the patella and the Vicryl isometric measurement suture material is also passed along. The knee is taken through its full range of motion and any changes happening in the length between the medial epicondylar K-wire and the medial aspect of the patella is recorded on the isometer. The position of the K-wire will be adjusted until no deviations are read on the isometer during full range of motion. Once the isometric point is identified, a tunnel is drilled starting from the insertion of the adductor tendon uptil the isometric point is reached. The graft is pulled through this tunnel, then exits at the medial condyle and again passed through another tunnel that is made through the patella.

Correct tension: The tension is set in the graft with your knee flexed up to 90º and the tension should be appropriate enough to control lateral excursion.

Secure fixation: After bringing the tendon graft from the medial to the lateral side through the bone tunnel, it turned onto the front surface of the patella where it is sutured.

Distal realignment procedures, also known as TTT or tibial tubercle transfer procedures are performed to reposition the kneecap by realigning the tendon under the kneecap to the underlying tibial tubercle. Tibia tubercle is the bony lump on the tibia (bone in the lower leg) below the knee cap. This serves as an attachment point for the patellar ligaments, tendons, and muscles. These procedures are done to prevent patellar subluxation or dislocation.

Distal realignment procedures include:

  • Maquet procedure – In this procedure, the tibia tubercle is cut, keeping the patellar tendon attachment intact. The tubercle is elevated by wedging the loosened piece of bone using a bone block. This procedure cannot move the tendon and tubercle medially (towards the inner aspect of the knee).
  • Elmslie-Trillat procedure This is a procedure like Maquet procedure, but the tendon and tubercle can be moved medially.
  • Fulkerson procedure – In this procedure, the tibia tubercle is moved more towards the inner aspect of the knee. This is achieved by breaking the bone into sharp pieces (splintered) which allows the bit of bone and the tendon to move more medially. After the procedure bits of bone are held in place using screws.
  • Hauser procedure – In this procedure, the tibia tubercle is moved medially, but not moved forward (anterior). Because of the shape of the tibia, the tubercle may shift its position more posteriorly and the patella may press down causing pain.
  • Roux-Goldthwait procedure – It is a distal realignment procedure where the patellar tendon is split vertically. The lateral half of the patellar tendon is pulled under the inner half (medial) and attached to tibia. This pulls the patella over to the center and helps prevent excess lateral shift.

The knee is the most complex joint in the body and is formed by the articulation between the thigh bone (femur) and the shinbone (tibia). A knee cap is present over the front of the joint to provide extra protection. These bones are held together by four strong rope like structures called ligaments. Two collateral ligaments are present on either side of the knee and control the sideway movements of the knee. The other two ligaments are the anterior and posterior cruciate ligaments, ACL and PCL respectively, which are present in the center of the knee joint and cross each other to form an “X”. The cruciate ligaments control the back and forth movement of the knee.

Knee ligament injuries are common in athletes involved in contact sports such as soccer, football and basketball. Knee ligament injuries are graded based on the severity of injury. In grade I the ligament is mildly damaged and slightly stretched, but the knee joint is stable. In grade II there is a partial tear of the ligament. In grade III there is a complete tear of the ligament and the ligament is divided into two halves making the knee joint unstable. The surgical repair of the completely torn ligament involves reconstruction of the torn ligament using a tissue graft taken from another part of the body, or from a donor. The damaged ligament is replaced by the graft and fixed to the femur and tibia using metallic screws. Gradually, over a period of a few months, the graft heals.

Arthroscopic reconstruction of the knee ligament is a minimally invasive surgery performed through a few tiny incisions. An arthroscope is inserted into the knee joint through one of the small incisions to provide clear images of the surgical area (inside the knee) to the surgeon on a television monitor. Guided by these images the surgeon performs the surgery using small surgical instruments inserted through the other small incisions around the knee. As the surgery is performed through small incisions it provides the following benefits:

  • Less post-operative pain
  • Shorter hospital stay
  • Quicker recovery.

Following arthroscopic reconstruction of the injured ligament most athletes can return to their high-level sport after a period of rehabilitation.

Posterior cruciate ligament (PCL), one of four major ligaments of the knee are situated at the back of the knee. It connects the thighbone (femur) to the shinbone (tibia). The PCL limits the backward motion of the shinbone.

PCL injuries are very rare and are difficult to detect than other knee ligament injuries. Cartilage injuries, bone bruises, and ligament injuries often occur in combination with PCL injuries. Injuries to the PCL can be graded as I, II or III depending on the severity of injury. In grade I the ligament is mildly damaged and slightly stretched, but the knee joint is stable. In grade II there is partial tear of the ligament. In grade III there is complete tear of the ligament and the ligament is divided into two halves making the knee joint unstable.

The PCL is usually injured by a direct impact, such as in an automobile accident when the bent knee forcefully strikes the dashboard. In sports, it can occur when an athlete falls to the ground with a bent knee. Twisting injury or overextending the knee can cause the PCL to tear.

Patients with PCL injuries usually experience knee pain and swelling immediately after the injury. There may also be instability in the knee joint, knee stiffness that causes limping, and difficulty in walking.

Diagnosis of a PCL tear is made based on your symptoms, medical history, and by performing a physical examination of the knee. Other diagnostic tests such as X-rays and MRI scan may be ordered. X-rays are useful to rule out avulsion fractures wherein the PCL tears off a piece of bone along with it. An MRI scan is done to help view the images of soft tissues better.

Treatment options may include non-surgical and surgical treatment. Non-surgical treatment consists of rest, ice, compression, and elevation (RICE protocol); all assist in controlling pain and swelling. Physical therapy may be recommended to improve knee motion and strength. A knee brace may be needed to help immobilize your knee. Crutches may be recommended to protect your knee and avoid bearing weight on your leg.

Generally, surgery is considered in patients with dislocated knee and several torn ligaments including the PCL. Surgery involves reconstructing the torn ligament using a tissue graft which is taken from another part of your body, or a cadaver (another human donor). Surgery is usually carried out with an arthroscope using small incisions. The major advantages of this technique include minimal postoperative pain, short hospital stay, and a fast recovery. Following PCL reconstruction, a rehabilitation program will be started that helps you resume a wider range of activities. Usually, a complete recovery may take about 6 to 12 months.

Lateral collateral ligament (LCL) is a thin set of tissues present on the outer side of the knee, connecting the thighbone (femur) to the fibula (side bone of lower leg). It provides stability as well as limits the sidewise rotation of the knee. Tear or injury of LCL may cause instability of the knee that can be either reconstructed or repaired to regain the strength and movement of the knee.

The knee is the largest joint of the body and is stabilized by a set of ligaments. In the knee, there are four primary ligaments viz. anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), medial collateral ligament (MCL) and lateral collateral ligament (LCL).

Lateral collateral ligament (LCL) may tear due to trauma, sports injuries, or direct blow on the knee. Torn LCL may result in pain, swelling and even instability of the knee. LCL injuries and torn LCL can be diagnosed through physical examination and by employing imaging techniques such as X-rays or MRI scan.

The treatment of the torn LCL include non-surgical interventions such as rest, ice, elevation, bracing and physical therapy to help reduce swelling, and regain activity as well as strength and flexibility of the knee. Surgery is recommended if non-surgical interventions fail to provide much relief. Surgical interventions include repair and reconstruction of the torn ligament. Based on the severity and location of the injury, repair or reconstruction of the LCL is recommended. In case the ligament is torn from the upper or lower ends of attachment, then repair of the LCL is done with sutures or staples. If the ligament is torn in the middle or if the injury is older than 3 weeks, LCL reconstruction is recommended.

Procedure

LCL reconstruction involves replacement of the torn ligament with healthy strong tissue or graft. The tissue or graft can be taken either from the tissue bank (called allograft) or from the patient’s body (called autograft). The type of graft used, depends upon the condition of the patient and choice of your surgeon. Hamstring tendons are commonly used as autograft, as removal of such tendons does not affect the strength of the legs and effectively stabilizes the knee. A small incision is made on the lateral side of the knee to perform the LCL reconstruction. The procedure is done through an open incision and not arthroscopically. The thighbone and fibula bones are drilled precisely and accurately with specialized instruments to form tunnels. The ends of the tendon graft are passed through tunnels and are fixed by using screws, metal staples or large sutures. The knee undergone LCL reconstruction surgery is braced for 6-8 weeks.

Post-operative care

The common post-operative instructions for LCL reconstruction are:

  • Use crutches to avoid weight on the knee for at least 6 weeks
  • Use ice and the prescribed medications to reduce swelling
  • Avoid lifting heavy weight or vigorous exercise
  • Follow the specific instruction given by your surgeon
  • Follow rehabilitation programs or physical therapy to regain the motion and strength of the knee

Risks and complications

Some of the possible risks and complication associated with LCL reconstruction include:

  • Chronic pain
  • Knee weakness
  • Knee instability
  • Peroneal nerve injury

The anterior cruciate ligament is one of the major stabilizing ligaments in the knee. It is a strong rope like structure located in the center of the knee running from the femur to the tibia. When this ligament tears unfortunately, it does not heal and often leads to the feeling of instability in the knee.

ACL reconstruction is a commonly performed surgical procedure and with recent advances in arthroscopic surgery can now be performed with minimal incision and low complication rates.

ACL Reconstruction Hamstring Tendon

Anterior cruciate ligament (ACL) reconstruction hamstring method is a surgical procedure that replaces the injured ACL with a hamstring tendon. Anterior cruciate ligament is one of the four major ligaments of the knee that connects the femur (thigh bone) to the tibia (shin bone) and helps stabilize your knee joint. Anterior cruciate ligament prevents excessive forward movement of the lower leg bone (the tibia) in relation to the thigh bone (the femur) as well as limits rotational movements of the knee.

A tear of this ligament can make you feel as though your knees will not allow you to move or even hold you up. Anterior cruciate ligament reconstruction is surgery to reconstruct the torn ligament of your knee with a tissue graft.

Causes

An ACL injury most commonly occurs during sports that involve twisting or overextending your knee. An ACL can be injured in several ways:

  • Sudden directional change
  • Slowing down while running
  • Landing from a jump incorrectly
  • Direct blow to the side of your knee, such as during a football tackle

Symptoms

When you injure your ACL, you might hear a loud “pop” sound and you may feel the knee buckle. Within a few hours after an ACL injury, your knee may swell due to bleeding from vessels within the torn ligament. You may notice that the knee feels unstable or seems to give way, especially when trying to change direction on the knee.

Diagnosis

An ACL injury can be diagnosed with a thorough physical examination of the knee and diagnostic tests such as X-rays, MRI scans and arthroscopy. X-rays may be needed to rule out any fractures. In addition, your doctor will often perform the Lachman’s test to see if the ACL is intact. During a Lachman test, knees with a torn ACL may show increased forward movement of the tibia and a soft or mushy endpoint compared to a healthy knee.

Pivot shift test is another test to assess ACL tear. During this test, if the ACL is torn, the tibia will move forward when the knee is completely straight and as the knee bends past 30° the tibia shifts back into correct place in relation to the femur.

Procedure

The goal of ACL reconstruction surgery is to tighten your knee and to restore its stability.

Anterior cruciate ligament reconstruction hamstring method is a surgical procedure to replace the torn ACL with part of the hamstring tendon taken from the patient’s leg. The Hamstring is the muscle located on the back of your thigh. The procedure is performed under general anesthesia. Your surgeon will make two small cuts about 1/4-inch-long around your knee. An arthroscope, a tube with a small video camera on the end is inserted through one incision to see the inside of the knee joint. Along with the arthroscope, a sterile solution is pumped into the joint to expand it enabling the surgeon to have a clear view and space to work inside the joint. The knee is bent at right angles and the hamstring tendons felt. A small incision is made over the hamstring tendon attachment to the tibia and the two tendons are stripped off the muscle and the graft is prepared. The torn ACL will be removed and the pathway for the new ACL is prepared. The arthroscope is reinserted into the knee joint through one of the small incisions. Small holes are drilled into the upper and lower leg bones where these bones come together at the knee joint. The holes’ form tunnels in your bone to accept the new graft. Then the graft is pulled through the predrilled holes in the tibia and femur. The new tendon is then fixed into the bone with screws to hold it into place while the ligament heals into the bone. The incisions are then closed with sutures and a dressing is placed.

Risks and complications

Possible risks and complications associated with ACL reconstruction with hamstring method include:

  • Numbness
  • Infection
  • Blood clots (Deep vein thrombosis)
  • Nerve and blood vessel damage
  • Failure of the graft
  • Loosening of the graft
  • Decreased range of motion
  • Crepitus (crackling or grating feeling of the kneecap)
  • Pain in the knee
  • Repeat injury to the graft

Post-operative care

Following the surgery, rehabilitation begins immediately. A physical therapist will teach you specific exercises to be performed to strengthen your leg and restore knee movement. Avoid competitive sports for 5 to 6 months to allow the new graft to incorporate into the knee joint.

Anterior cruciate ligament reconstruction is a very common and successful procedure. It is usually indicated in patients wishing to return to an active lifestyle especially those wishing to play sports involving running and twisting. Anterior cruciate ligament injury is a common knee ligament injury. If you have injured your ACL, surgery may be needed to regain full function of your knee.

ACL Reconstruction Patellar Tendon

Anterior cruciate ligament (ACL) reconstruction patellar tendon is a surgical procedure that replaces the injured ACL with a patellar tendon. Anterior cruciate ligament is one of the four major ligaments of the knee that connects the femur (thigh bone) to the tibia (shin bone) and helps stabilize the knee joint. Anterior cruciate ligament prevents excessive forward movement of the lower leg bone (tibia) in relation to the thigh bone (femur) as well as limits rotational movements of the knee.

A tear of this ligament can make you feel as though your knees will not allow you to move or even hold you up. Anterior cruciate ligament reconstruction is surgery to reconstruct the torn ligament of your knee with a tissue graft.

Causes

An ACL injury most commonly occurs during sports that involve twisting or overextending your knee. The ACL can be injured in several ways:

  • Sudden directional change
  • Slowing down while running
  • Landing from a jump incorrectly
  • Direct blow to the side of your knee, such as during a football tackle

Symptoms

When you injure your ACL, you might hear a loud “pop” sound and you may feel the knee buckle. Within a few hours after an ACL injury, your knee may swell due to bleeding from vessels within the torn ligament. You may notice that the knee feels unstable or seems to give way, especially when trying to change direction on the knee.

Diagnosis

An ACL injury can be diagnosed with a thorough physical examination of the knee and diagnostic tests such as X-rays, MRI scans and arthroscopy. X-rays may be needed to rule out any fractures.

In addition, your doctor will often perform the Lachman’s test to see if the ACL is intact. During a Lachman test, knees with a torn ACL may show increased forward movement of the tibia and a soft or mushy endpoint compared to a healthy knee.

Pivot shift test is another test to assess ACL tear. During the pivot shift test, if the ACL is torn the tibia will move forward when the knee is completely straight and as the knee bends past 30° the tibia shifts back into correct place in relation to the femur.

Procedure

The goal of ACL reconstruction surgery is to tighten your knee and to restore its stability.

Anterior cruciate ligament reconstruction patellar tendon is a surgical procedure to replace the torn ACL with part of the patellar tendon taken from the patient’s leg. The new ACL is harvested from the patellar tendon that connects the bottom of the kneecap (patella) to the top of the shinbone (tibia). The procedure is performed under general anesthesia. Your surgeon will make two small cuts about ¼ inch around your knee. An arthroscope, a tube with a small video camera on the end is inserted through one incision to see the inside of the knee joint. Along with the arthroscope, a sterile solution is pumped into the knee to expand it providing the surgeon a clear view of the inside of the joint. The torn ACL will be removed and the pathway for the new ACL is prepared. Your surgeon makes an incision over the patellar tendon and takes out the middle third of the patellar tendon, along with small plugs of bone where it is attached on each end. The remaining portions of the patellar tendon on either side of the graft are sutured back after its removal. Then the incision is closed. The arthroscope is reinserted into the knee joint through one of the small incisions. Small holes are drilled into the upper and lower leg bones where these bones come together at the knee joint. The holes’ form tunnels in your bone to accept the new graft. Then the graft is pulled through the predrilled holes in the tibia and femur. The new tendon is then fixed into the bone with screws to hold it into place while the ligament heals into the bone. The incisions are then closed with sutures and a dressing is placed.

Risks and complications

Possible risks and complications associated with ACL reconstruction with patellar tendon method include:

  • Numbness
  • Infection
  • Blood clots (Deep vein thrombosis)
  • Nerve and blood vessel damage
  • Failure of the graft
  • Loosening of the graft
  • Decreased range of motion
  • Crepitus (crackling or grating feeling of the kneecap)
  • Pain in the knee
  • Repeat injury to the graft

Post-operative care

Following the surgery rehabilitation begins immediately. A physical therapist will teach you specific exercises to strengthen your leg and restore knee movement. Avoid competitive sports for 5 to 6 months to allow the new graft to incorporate into the knee joint.

Anterior cruciate ligament reconstruction is a very common and successful procedure. It is usually indicated in patients who desire to return to an active lifestyle especially those wishing to play sports involving running and twisting. Anterior cruciate ligament injury is a common knee ligament injury. If you have injured your anterior cruciate ligament, surgery may be needed to regain full function of your knee.

Have Questions about Knee Reconstruction?